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We study numerically and by scaling methods the distributions and moments of 
several structural properties of percolation clusters in two and three dimensions. 
The clusters are generated at criticality and properties such as the distribution 
of the mass as a function of linear size or chemical distance are studied. Our 
results suggest that the hierarchy of moments can be represented by a single gap 
exponent. Using a scaling approach, we obtain analytical forms for the different 
distribution functions which agree very well with the numerical data. 
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1. I N T R O D U C T I O N  

The s t ruc tura l  p roper t ies  of pe rco la t ion  clusters have been a subject  of con- 
s iderable  interest  in recent  years. (~-13) Several  exponents  have been found 
useful for charac te r iz ing  the pe rco la t ion  cluster  s tructure.  (14'151 However l  

mos t  of  the effort has been expended  on s tudying  exponents  tha t  usual ly  
charac ter ize  first m o m e n t  quant i t ies .  M o r e  in fo rmat ion  can be ob ta ined  
from s tudying  o ther  m o m e n t s  and  the ent ire  in fo rmat ion  is inc luded in the 
a p p r o p r i a t e  densi ty  d i s t r ibu t ions  of which very litt le is known.  F o r  exam- 
ple, the concept  of the fractal  d imens ion  (v) dy of a r a n d o m  aggregate  has 
a t t r ac t ed  much  interest  in recent years. The  fractal  d imens ion  of a r a n d o m  
cluster  character izes  the average mass  M of the cluster  wi th in  a rad ius  R, 

( M ) ~ R  Jj (1.1) 

M u c h  effort has been devo ted  to s tudying  this re la t ion for different types of 
r a n d o m  aggregates.  (16 22) Very litt le is k n o w n  a b o u t  the p robab i l i t y  dis- 
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tribution P(M[R), whose first moment is ( M )  in Eq. (1.1). Important 
concepts such as the lacunarity, (7'H) which characterizes the size dis- 
tribution of "lakes" of empty sites, is related to the second moment ( M 2 ) ,  
and not much is known about it. The exponent for the second cumulant 
was studied also by Stauffer. (23) 

Recently, probability distributions for several fractal properties such as 
the voltage distribution in percolation and the growth probabilities of 
diffusion-limited aggregation (DLA) have been found to be of log-normal 
type. (2.27) In these cases an infinite hierarchy of independent exponents 
(for which the term multifractal was coined) is needed to characterize the 
different moments. (2s 3o)Also, for the distribution of mass P(M[R) in 
DLA, indications for multifractal behavior were found. (3'1 On the other 
hand, probability distributions such as P(MrR) were studied analytically 
for percolation clusters generated on a Cayley tree and found to be of 
normal type. (32~ 

In the present work we study density distributions, moments, and 
cumulants of several structural properties of the incipient infinite per- 
colation cluster embedded in two and three dimensions. We study the dis- 
tribution of mass M within a radius R-P(M] R) and within a chemical 
distance l -  P(M] l), and the distribution of R for a given chemical distance 
l-P(Rll).  We calculate numerically the moments and cumulants of the 
above quantities up to the 12th (and -12 th )  order. We find that the 
moments (A n) scale as (A)n,  indicating that the distributions are of nor- 
mal type with a single gap exponent characterizing the infinite hierarchy of 
moments. Using a scaling approach, we suggest analytical forms for the 
different density distributions P(M[ R), P(MI l), and P(RI l). We find that 
P(M]R)M, P(Mtl)M, and P(R[I)R scale very well with the single 
parameter x=M/RdJ; M/l d~, and R/l ~, respectively. Furthermore, the 
functional form of these functions for large x is found to be a "contracted" 
exponential, i.e., e x p ( - x  6) with 6 > 1. 

2. M E T H O D  

The distributions and the moments are calculated using various 
ensembles of site percolation clusters generated in two and three dimen- 
sions. The clusters are generated at criticality (p=p,.=0.5927 in two 
dimensions and p = p c = 0 . 3 1 1 7  in three dimensions (4)) using the growth 
process presented by Leath (1~ and Alexandrowicz. (s~ In this method we 
start (at t = 0 )  with an occupied site taken as a seed at the origin of a 
hypercubic lattice. In the first step (t = 1) we mark its nearest neighbors as 
occupied or empty with probabilities p,. and 1 - P c ,  respectively. These 
occupied sites constitute a shell of chemical distance l-- 1 from the origin. 
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At t =  2 the nearest neighbor sites (which were not tested earlier) of the 
first chemical shell are chosen to be occupied or empty with the same 
probabilities. The new occupied sites represent a chemical shell with l = 2. 
The process is repeated until no occupied sites exist in the new shell. If the 
cluster grows and "touches" the boundaries of the largest hypercubic box 
available by the computer memory, then the growth outward is stopped 
and is continued inside the box only. 

The clusters were stored in the computer as a "bit hypermatrix", which 
was found useful for both time- and memory-saving. Although only a small 
part of the bit matrix is used, we find that for D = 2 and D = 3 it is still 
more efficient than using pointers, !6) which require much overhead in time 
and memory. 

For  each cluster we measure the following structural properties: 

(a) M(R), the mass (i.e., number of occupied sites) within a 
geometrical linear size R. We use the circular radius (i.e., distance from the 
center) as our linear size rather than a square box (i.e., distance from the 
axis). We checked and found that the difference between the circle and 
the square is only in the prefactors and not in the exponents, as expected. 

(b) M(l), the mass as a function of the number of chemical shells 
from the seed of the cluster (the number of chemical shells is also referred 
to in the literature as the chemical distance, topological distance, graph 
distance, or time.) 

(c) R(l), the geometrical distance of each site from an arbitrary given 
site as a function of its chemical distance. 

(d) l(R), the chemical distance of each site as a function of the 
geometrical distance. 

For  each of the above properties we calculate numerically the 
following quantities: 

(i) Average or first moment, 

(Y(x) } = ~ Y(x)/U (2.1) 
N 

where Y denotes M, R, or l; x denotes R or l; and N denotes the number of 
clusters for properties (a) and (b) and the number of sites for (c) and (d). 

(ii) Moments, 

(Y~(x) } = ~ Yn(x)/N (2.2) 
N 

where n is the order of the moment, n = -12,..., - 1 ,  -0 .5 ,  -0 .25,  0.25, 0.5, 
1,..., 12. 
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The moments in (2.2) are calculated using the distribution F(YIx) 
[see (iii)], 

(Y~(x) ) = ~ Y"F( YI x)/Y, F( YI x) (2.3) 
Y : Y  

From the various moments we calculate the cumu[ants, (33) 

( C U M  ~ ) = ~ {( - 1  )('+ l~[n!/(i-j!')] ( Y;) '}  (2.4) 

where the sum is over all the possible factorials (i, j )  of n. 

(iii) Distributions F(Y] x), the number of clusters or sites with a gwen 
x as a function of Y. In order to save memory space in the computer 
without losing accuracy, we used a "dynamical binning," i.e., for every x we 
divide differently the range of Y into small bins (A Y); thus we obtain the 
maximum number of smallest bins. Using the distributions we calculate the 
probability densities, 

P(YIx)=F(YIx)/I(AY).~ F(Y,x)I (2.5) 
Y 

Since we are interested in studying the properties of the incipient 
infinite cluster, we include in the statistics only those clusters that satisfy 
certain boundary conditions (B.C.). We use several types of B.C., and for 
each of them we generate an ensemble of clusters: 

(a) The clusters are grown until a certain (large) chemical shell l is 
reached and then the process is stopped (this will be referred to as fixed I). 
Those clusters that do not reach the number of shells l are excluded from 
the ensemble. 

(b) The clusters are grown until they "die" and only those that reach 
at least a minimum shell l are included (rain l). 

(c) Only clusters that reach all 2D boundaries of the largest box 
available, which is of size (2R) D, are included (fixedR). In this case they 
grow only inside the box. 

(d) The clusters are grown until they "die" and only those that reach 
at least all 2D boundaries of a box of size (2R) D are included (rain R). In 
this case they also grow outside the box. 

It is important to mention that all ensembles of B.C. (a) and (c) are 
disjoint to each other, while ensembles generated using B.C. (b) and (d) 
may be contained in one another if they were grown on the same lattice, 
since they have the same pseudorandom seed. 
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Each of the above B.C. has some boundary effects on the properties 
measured and one has to take these into consideration in order to get the 
less biased ensemble of clusters. For  example, when using fixed R there 
exist boundary effects for large values of/ .  This is because only very dense 
clusters can reach all 2D boundaries from inside, and thus the shells near 
the boundaries are "over massed." There also exist boundary effects for the 
case of fixed l. This B.C. is not useful when measuring M(R), since many 
sites within a certain R will be occupied only by larger shells. 

We used for the simulations an IBM-3090 (7000 Kb memory). The 
average time for growing a 200-shell cluster in D = 2 is 2.25 sec, and for 
1000 shells is 23 sec. In D = 2 we tested altogether 7.8 x 109 sites in 375 hr, 
which results in 5800 sites/sec, and in D =  3, 2.3 x 10  9 sites in 187.5 hr, 
which gives about 3500 sites/sec. 

In D = 2 we generated 10,000 clusters for each of the eight disjoint 
ensembles with cluster sizes 400 x 400 and the B,C. : fixed l =  300, fixed 
R = 200, and six smaller values, and about 3000 clusters of cluster size 
2000 x 2000 for each of the B.C. min l =  300, 1000, 2000, 3000, and 4000 
and rain R = 200, 600, and 1000. 

In D = 3 we generated 10,000 clusters of size 100 x 100 x 100 for each 
of the B.C. rain l = 200, 500, and 800 and min R = 10, 20, 30, 40, and 50. 

3. RESULTS: M O M E N T S  AND C U M U L A N T S  

3.1. M(R) 

We begin by presenting our numerical results for the moments <Mn> 
as a function of R in two and three dimensions (see Fig. 1). We expect the 
first moment, i.e., the average of the mass, to scale as 

<M> = AR ds (3.1) 

where A is a constant and d I is the fractal dimension of the perculation 
cluster. Indeed, the plot of log<M> versus log R gives a straight line with 
a slope equal to the fractal dimension. In D = 2  the best fit gives 
@= 1.90+_0.01, which is very close to the value given by theory, 
df=91/48,  (4) and in D = 3  we get @=2.50+_0.02, in aggrement with 
previous results. (4'a) Note that very similar values of d 7 are obtained by a 
scaling approach (see Section 4). 

In Figs. la and lb we plot log(<M"> l/n) versus log R for values o fn  in 
the range -12~<n~< 12. It is seen that all lines have the same slope, 
indicating that all moments follow the form 

<M"> = A , R  d", d ,=ndf  (3.2) 

822/52/1-2-14 
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Fig. 1. Various plots of the moments of M(R). (a, b) Plot of log(<M")l /n)  versus log R with 
B.C. min l = 4000 for D = 2 and min l = 500 for D = 3, respectively. All the lines have the same 
slope, except for slight deviations at the boundaries (best fit results are given in Table I). 
(c) Plot of l og<M")  versus log R for D = 3  (rain l =  500). Negative and positive moments 
are almost symmetrical. (d, e) Plot of l o g ( < C U M " )  TM) (of mass) versus log R for D = 2  
(min l = 4000) and D = 3 (rain l = 500), respectively. All lines have the same slope, except for 
large R, due to boundary effects. Best fit results are presented in Table I. 
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and a single gap exponent d F characterizes all moments. The values of A,, 
and dn obtained from a best fit of Eq. (3.2) to the data are given in Table I. 
In Fig. lc we plot log(M ") versus log R, showing that positive and 
negative moments are almost symmetrical; the differences being only in the 
prefactors An. 

We also calculate the ratios ( M n ) / ( M ) "  versus R, which are expec- 
ted to be constants equal to An/AT. However, we find that boundary effects 
are very strong and make this difficult to see. Nevertheless, the larger the 
clusters are taken, the better is the constant line seen, indicating that 
( M n ) / ( M ) "  approaches a constant for large R. 

We calculate several cumulants, which are important since they 
provide more information about the form of the distribution function. The 
cumulants are assumed to follow the scaling form 

(CUM" ) = C,,R d", d '  n = d,  = ndf (3.3) 

since they are only the differences between the appropriate moments. 
Indeed, as seen in Figs. ld and le, here also one gets parallel straight lines 
when ploting log(CUM n) versus log R, suggesting that a single gap 
exponent characterizes all the cumulants. The values of Cn are given in 
Table I. The second cumulant is of special interest because of its relation to 
the lacunarity, (7'11) which is defined by its prefactor C2. 

Table I. Numerical Estimates of A .  and d.  for Several Moments of M(R) 
( (M")  =A,,R d~ and C. for the Cumulants of the Mass ( ( C U M " )  = C,,R d.) 

D = 2  D = 3  

n l o g a  n d~ log C ,  log  An d n log  Cn 

12 5 . 0 + 0 . 3  - 2 3 . 1 + 0 . 5  - -  2 5 . 3 + 0 . 9  - 3 4 . 1 + 0 . 5  - -  

8 0 . 7 + 0 . 2  - 1 5 . 0 7 + 0 . 1  - -  1 3 . 5 + 0 . 6  - 2 2 . 2 + 0 . 1  - -  

~1- - 3 . 0 + 0 . 1  - 7 . 6 5 + 0 . 0 5  - -  2 . 2 + 0 . 4  -11 .6__0 .05  - -  

- 2  - 2 . 1 + 0 . 1  - 3 . 8 5 + 0 . 0 2  - -  0 . 2 3 + 0 . 1 0  - 4 . 9 9 + 0 . 0 3  - -  

-1  - 1 . 0 _  0.1 -1.92__+0.02 - -  4 3 . 1 3 _ 0 . 0 5  - 2 . 5 9 + 0 . 0 3  - -  

4 ) .5  0.52 +_ 0.05 ~) .95 -+ 0.01 - -  43.09 + 0.05 -1 .28  + 0.01 - -  

0.5 0 .55_+0.05  0.95_+0.01 - -  0 .15-I -0 .05 1 . 2 6 + 0 . 0 1  - -  

1 0.8_+0.1 1 . 9 0 + 0 . 0 1  - -  0.4_+0.1 2 . 5 0 + 0 . 0 1  - -  

2 1.6_+0.1 3 . 8 1 + 0 . 0 1  - 1 . 1 + 0 . 2  0.85__+0.1 5.03_+0.01 43.40_+0.1 

4 3.2_+0.1 7.61___0.01 4 . 4 + 0 . 3  2.2_+0.1 1 0 . 0 9 + 0 . 0 3  3.8_+0.2 

8 6 . 3 + 0 . 2  15.15_+0.02 13.3_+0.3 4 .4_+0.2  2 0 . 1 0 + 0 . 0 5  12.0-+0.5  

12 9 .7_+0.2  22 .76_+0.02  24.5_+0.4  8.7_+0.3 30.3_+0.1 22.5_+0.7  
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3 .2 .  M( l) 

Next we present the moments ( M  n) as a function of l in two and 
three dimensions (see Fig. 2). We expect the first moment, i.e., the average 
of the mass, to scale as 

( M )  = AI  d~ (3.4) 

where A is a constant and dt is a topological fractal dimension. Indeed, the 
plot of l o g ( M )  versus log l gives a straight line and the slope gives results 
for dt close to previous results. (5'8'9) In D = 2  the best fit gives 
d t = 1.66 _+ 0.01, and in D -- 3 we get d /=  1.75 _+ 0.01. Very similar values of 
d t are also obtained by using a scaling approach (see Section 4). 

In Figs. 2a and 2b we plot l o g ( ( M " )  I/~) versus log I for values of n in 
the range - 1 2  ~<n ~< 12. All lines have the same slope, indicating that all 
moments follow the form 

( M  n ) = A n l  '~~ d n = n d ,  (3.5) 

and a single gap exponent dt characterizes all moments. 
In Fig. 2c we plot l o g ( M  ")  versus log/, showing that positive and 

negative moments are almost symmetrical. 
We calculate several cumulants for M(1), which are assumed to follow 

the scaling form 

( C U M n ) = C n l  d;, d ' n = d , = n d  t (3.6) 

As seen in Figs. 2d and 2e, here also parallel straight lines are obtained 
when ploting log (CUM n) versus log/, suggesting that a single gap 
exponent characterizes all the cumulants of M(l) .  

3.3 .  R(I) 

The first moment of the geometrical distance ( R )  between any two 
sites on the incipient infinite percolation cluster as a function of the 
chemical distance l is given by (91 

( R )  = AI  ~ (3.7) 

where f is an exponent that relates the extrinsic distance R to the intrinsic 
distance /. The value of ~ is obtained using two methods. The first is by 
applying a best fit of Eq. (3.7) to the numerical data presented in Fig. 3. 
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Fig. 2. Various plots of moments of M(I). (a, b) Plot of log( (M") t /z )  versus log l for D = 2 
(RC. rain l = 3000) and D = 3 (min l = 200), respectively. All lines have the same slope, except 
at the boundaries. (c) Plot of l o g ( M  ~) versus log l for D =  2 (min l =  3000). Negative and 
positive moments are almost symmetrical. (d, e) Plot of l o g ( ( C U M ~ )  I/n) (of mass) versus 
log l for D = 2 (rain l = 4000) and D = 3 (min l = 500), respectively. All lines have the same 
slope, except at the boundaries. 
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Fig. 3. Various plots of moments of R(I). (a, b) Plot of log(<R ") w,) versus log I for D = 2 
(B.C. rain l =  3000) and D =  3 (min R = 4 0 ) ,  respectively. All the positive moments have the 
same slope, except at the boundaries. The negative moments show a drop in the slope for 
small l, but the slope is the same as for the positive moments for large/. Best fit results are 
given in Table II. (c) Plot of log<R"> versus log l for D = 2  (min l =  3000). It is seen that 
negative moments are asymmetrical to positive moments. (d, e) Plot of Iog(<CUM")Wn) (of 
radius) versus log l for D = 2 (min l = 4000) and D = 3 (rain l = 500), respectively. All the lines 
have the same slope except at the boundaries. Best fit results are given in Table II. 
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Fig. 4. The exponent `7 as calculated by an extrapolation method. ~8) (a) Results for D = 2. 
The solid line is for min l = 300 and the points are for rain l = 2000. The extrapolation of the 
lines gives , 7=0 .875+0 .005 .  (b) Results for D = 3 .  Line a is for rain l = 2 0 0  and line b is for 
rain R = 20. The extrapolation of the lines gives ~ = 0.700 + 0.005. The drop of the lines for 
large l is due to boundary effects. 
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A second and more accurate method uses an extrapolation method similar 
to that applied by Grassberger. (8) Calculating the quantity 

E(l)=l(R(l))/IO.5(R(l))+ ~ ( R ( / ' ) ) ]  (3.8) 
l ' = l , l  1 

one can see that 

E ( / )=  l~+1/[0.5l~+ ('~+ 1) 1(i__ l)g+l] 

and thus 

lim E( l )  = ~ + 1 
l ~ o O  

By plotting E(l)- 1 versus 1/l one can extrapolate ~. This method yields 
= 0.875 • 0.005 for D = 2 and ~ = 0.70 +_ 0.01 for D = 3 (Fig. 4). Note that 

these results are slightly lower than the previous estimates (8) ~= 
0.883 _+ 0.003 for D = 2 and ~= 0.725 _+ 0.006 for D- -3 .  These numerical 
deviations may result from the different growth methods of the infinite 
cluster used in these studies. While in the present work the clusters were 
generated from a single site seed, in ref. 8 a hyperplane of dimension D -  1 
was used as a seed. 

Higher moments of ( R  n) are also shown in Fig. 3. It is seen from 
Figs. 3a and 3b that for large l all curves of l o g ( ( R ' )  1/") as a function of 
log / yield parallel straight lines. This is consistent with the following form 
for the moments: 

(R ' )  = A.l ~" (3.9) 

The values of A, and ~, obtained by best fit to the data are presented in 
Table II, confirming that gn = nF and a single gap-exponent characterizes 
all the moments ( R " ) .  

For small I, one can see from Fig. 3 that the slopes of the negative 
moments decrease as n decreases. This can be seen better in Fig. 3c, where 
( R  n) is plotted versus l. This behavior may be attributed to the dis- 
creteness of the lattice and due to the fact that negative moments of (R, )  
are dominated by small values of R. The smaller the value of 1, the smaller 
are the values of R that are relevant, and these are strongly affected by the 
discreteness of the lattice. 

In Figs 3d and 3e the corresponding cumulants of the above moments 
are shown. 
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Table II. Numerical Estimates of A,, and d.  for Several Moments of R(I) 
( (R")  =A,, I  ~.) and C.  for the Cumulants of the Radius ( ( C U M n ) =  C,,I ~.) 

D = 2  D = 3  

log A.  ~. log C. log A.  9. log C. 

-12 

-8 
-4  

-2  

-1 

-0,5 

0.5 

1 
2 

4 

8 
12 

37.0+0.2 10.6__+0.2 - -  15.3+0.2 7 .9+0.5  - -  

20.7+0.1 7.1+0.1 - -  3.0_+0.1 -4.9 -+ 0.3 - -  

5.15 + 0.05 -3.50 + 0.05 - -  1.70 _ 0.03 -2.9 __+ 0.2 - -  

0 .74+0.02 -1 ,75+0.02  - -  0.28_+0.02 -1.3__0.1 - -  
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Fig. 5. Plot of l o g ( ( l " )  TM) versus l o g R  for D = 2  (B.C. min l=3000) .  For the positive 

moments the lines are not parallel, but for the negative moments they become more parallel as 

n is decreased. 
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3.4. I(R) 
When calculating ( l )  for a given R, strong boundary effects are 

noticed. This is due to the fact that for a given R, occupied sites with large l 
are missing in the statistics. For the positive moments ( ln) ,  n > 0 ,  sites 
with large l are the dominant ones and since they are missing, the plot of 
log( /n)  is not linear with log R. On the other hand, the negative moments 
are dominated by sites with small l and therefore are less influenced by 
boundary effects, as can be seen in Fig. 5. In any case, our method of 
growing the percolation clusters is not efficient for measuring l(R). 

4. RESULTS:  D I S T R I B U T I O N S  A N D  S C A L I N G  

4.1. P(M]R) 
We begin our study of the distributions by ploting the numerical data 

for log P(MI R) as a function of log M for various values of R (see Fig. 6a). 
This figure presents the general form of the probability for having a mass 
M within a given radius R. 

To test whether the probability distribution P(M[R) can be presented 
in a scaling form, we plot P(MIR)/P(MIR)max (i.e., we normalize every 
probability by the highest probability value in the same R) as function of 
M/M1~2 (i.e., each mass is normalized by the value of one-half of the largest 
mass in the same R); see Fig. 6b. It is seen that the different curves in 
Fig. 6a collapse to a single curve in Fig. 6b, indicating the scaling property 
of P(MI R). 

In the above normalization scaling method we did not impose any 
assumption on the form of P(MIR). Indeed, a simple scaling assumption 
that yields the above scaling properties as well as the results for the 
moments found in Eqs. (3.1)-(3.3) is 

P(MIR)~M ~ fl(M/R+) (4.1) 

which is the simplest form that yields the relation 

(M)  = f MP(MI R) dM~ R aj (4.2) 

The factor M ~ in Eq. (4.1) comes from the normalization condition, 

f P(MfR) dM= 1 (4.3) 
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Other moments can be calculated using Eq. (4.1), 

( M  ~) = f M"M-1L(M/R dj) dM~ R ~4 (4.4) 

where dy is the gap exponent characterizing all the moments. The scaling 
form of Eq. (4.1) is also supported by the straight line connecting the 
maximas P(M*IR) in Fig. 6a, which has a slope -1.  By taking the 
logarithm of both sides of Eq. (4.1), 

log P(M[R)= - log  M - l o g  f l  (M/RdQ (4.5) 

and assuming the scaling property that f l(M/R uj) is a constant for 
M = M*, one obtains a slope of -1 ,  as seen in Fig. 6a. 

To test directly the scaling form suggested in Eq. (4.1), we plot in Figs. 
7a and 7d P(MIR)M as a function of M/RdJ: The data collapse shows 
excellent agreement with the above scalling form. The best scaling is 
obtained using dr= 1.896 +_ 0.002 for D = 2 and di= 2.50 + 0.02 for D = 3. 
This method of scaling provides an accurate method for determining dl, as 
it is very sensitive to the chosen value of d s. 

In Figs. 7b and 7e we plot log (P(M[ R)M) as a function of log M for 
D = 2  and D = 3 ,  respectively. For M < M *  [M* is the mass that has 
maximum probability P(M[ R)], the data points form a line that is nearly 
straight. This indicates that f~(x) is governed by a power law in this 
regime. Above M*, f l(x)  falls sharply, suggesting that an exponential form 
governs this regime. Thus, we assume that fl(x) has a power-exp form, 

f l ( x )=Alx  g~ e x p ( -  Blxa~), x=M/RUi (4.6) 

Using best fit techniques for fitting the data to Eq. (4.6), we obtain 
numerical values for As, BI, g~, and 61 given in Table III. 

Table III. The Parameters Obtained from a Best Fit to the 
Scaling form of P ( M I R )  a 

D = 2  D = 3  

d f  1.896 + 0.002 
A 1 0.020 -I- 0.004 
gl 6.9 _+ 0.1 ~, 0.0047 -I- 0.0005 b 
Bl 7 . 0x10  8_+1.0x10 8 
61 19.1 +0.1 a, 19.2 +0 .2  b 

2.50 _+ 0.02 
0.06 _+ 0.01 

6.3 _+ 0.2 
0.055 _+ 0.010 

4.2_+0.1 

a Eq. (4.6), f j ( X )  = A I  Xg ,  e x p ( - B I X ~ , ) .  
b Best fit to the form f l (X)  = exp(Cl - A 1 x - g '  - B I  X ~) .  
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4.2. P ( M I I  ) 
To study the distribution of mass as a function of the topological dis- 

tance l, we plot the numerical data for log P(MII)  versus log M for several 
values of l (see Fig. 8a). This figure presents the general form of the 
probability for having a mass M within a given chemical distance/. 

Next we plot P(Mt I)/P(MI/)max as function of M/M1~ 2 (Figs. 8b and 
8c). One can see that the different curves in Fig. 8a collapse to a single 
curve in Fig. 8c, indicating the scaling property of P(MI l). 

Following the arguments leadings to Eqs. (4.1)-(4.5), we assume a 
scaling form for the probability density 

P(MI/)  ~ M-~ f2(M/U ~) (4.7) 

from which it follows that 

( M  ~ ) = f M ~ M - l  f2(M/U' ) dM,.~ l ~a~ (4.8) 

where dt is the topological fractal dimension. The scaling form of Eq. (4.7) 
is supported by the straight line whose slope is - 1  connecting the maxima 
P(M* t l) in Fig. 8a. 

To test directly the scaling form suggested in Eq. (4.7), we plot in Figs. 
9a and 9c P ( M I I ) M  as a function of M/l a~. The data collapse shows 
excellent agreement with the above scaling form. The best scaling is 
obtained using d~ = 1.66 +_ 0.01 in D = 2 and dt = 1.76 -4- 0.01 for D = 3. 

In Figs. 9b and 9d we plot log (P(M] l )M) as a function of log M for 
D = 2 and D = 3, respectively. Above M*, f2(x) falls sharply, suggesting 
that an exponential form governs this regime. For M < M * ,  f2(x) rises 
rapidly and not linearly, suggesting that an exponential function governs 
also this regime. Thus, we assume that f2(x) has an exp-exp form, 

f2(x) = exp(C2 - -  A 2  x - g 2  - B2x62), x = M/l  al (4.9) 

Using best fit techniques for fitting tha data to Eq. (4.9), we obtain 
numerical values for A2, B2, C2, g2, and 62 given in Table IV. The exp-exp 
form can be confirmed by calculating from the numerical data 

and 

z I = - l og  f2(x) + C2 - A2x g2 = B2x62 (4.10) 

z2 = --log fz(x) + C2 - B 2  x62 = A2X g2 (4.11) 
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Table IV. 
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The Parameters Obtained from a Best Fit  t o  the 
Scaling Form of P ( M [ I )  a 

D = 2  D = 3  D = 6  b 

a, 
C2 

A2 

g2 
B2 

62 

1.66 _____ 0.01 1.76 + 0.01 2 

1.13 +0 .01  8.78 + 0 . 0 2  - -  

1.07 + 0.02 5.94 _____ 0.02 - -  

1.00 + 0.05 0.41 • 0.01 1 

0.165 __% 0.005 3.16 + 0.02 - -  

4.10 + 0.05 1.09 __ 0.03 1 

a Eq. (4.9), f 2 ( X )  = exp(C2 - A 2 X  g2 _ B2X62). 

b Fo r  percola t ion  on a Cayley  tree. {32) 

If Eq. (4.9) is valid, we expect that log z~ and log z 2 versus log x would 
yield straight lines. Indeed, two straight lines with the appropriate slopes ~2 
and - g 2  are seen in Fig. 9e. 

4.3. P(R[I) 
The distribution of the geometrical distance R between two sites as a 

function of their topological distance l is presented in Fig. 10a. We plot the 
numerical data for log P(RI l) versus log R for several values of l. 

Next we plot P(Rll)/P(Rll)max as a function of R/Rln; examples are 
shown in Figs. 10b and 10c. The different curves in Fig. 10a collapse to one 
curve in Fig. 10c, indicating the scaling property of P(Rll). 

Following the arguments leading to Eqs. (4.1) (4.5), we assume (see 
also ref. 34) a scaling form for the probability density 

P(R[I) ~ R-1f3(R/I~ ) (4.12) 

from which it follows that 

<R ~ > = f R ~  l f 3 ( R f )  aR ~ l "~ (4.13) 

where ~ is the exponent relating intrinsic and extrinsic distances. The 
scaling form of Eq. (4.12) is supported by the straight line whose slope is 
-1  connecting the maximas P(R*[l) in Fig. 10a. 

To test directly the scaling form suggested in Eq. (4.12), we plot in 
Figs. l l a  and l l c  P(R[ l)R as a function of R/t< The data collapse shows 
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Table V. The Parameters Obtained from a Best Fit  t o  the 
Scaling Form o f  P(RII)" 

D = 2  D = 3  D = 6  b 

,3 

A3 

g3 
B3 

63 

0.875 + 0.005 0.70 + 0.01 0.5 

3.00 _.+ 0.05 1.82 + 0.05 - -  

3.25 -+- 0.05 3.98 _ 0.05 - -  

0.54 _-t:_ 0.04 0.43 + 0.01 - -  

9.8 + 0.2 4.21 _ 0.03 2 

Eq.  (4.14), f 3 ( X )  = A3 Xg3 exp( - -B3X~3) ,  X= R/It 
Cayley tree results. (3z) 

excellent agreement with the above scaling form. The best scaling is 
obtained using g = 0.875 _+ 0.005 for D = 2 and ~ = 0.700 + 0.005 for D = 3. 

In Figs. 1 lb and 1 ld we plot log ( P ( R l l ) R )  as a function of log R for 
D = 2 and D =  3, respectively. Above R*, f3(x) falls sharply, suggesting 
that an exponential form governs this regime. On the other hand, for 
R < R*, log f3(x) rises linearly, suggesting that a power law governs this 
regime. Thus, we assume that f3(x) has an p o w e r - e x p  form, 

f 3 ( x )  = A3 xg3 exp( - B3x63), X = R / l  ~ (4.14) 

Using best fit techniques for fitting the data to Eq. (4.14), we obtain 
numerical values for A 3, B3, g3, and 6~ given in Table V. The power law in 
Eq. (4.14) is seen easily in Figs. l l b  and l ld ;  however, to confirm the 
exponential regime in Eq. (4.14) we calculate from the numerical data 

z 3 = - logf3 (x )  + log A 3 -{- g3 log X = B3 x63 (4.15) 

Ploting log z3 versus log x should give a straight line, which is seen in the 
exponential regime in Fig. 1 le. 

5. D I S C U S S I O N  A N D  C O N C L U S I O N S  

The exponents ds, dr, and g calculated independently in this work are 
related by (9) 

= d , / d  s (5.1) 

The numerical values for d s ,  d~, and ~ found for two and three dimensions 
(see Table VI) are indeed in exellent agreement with Eq. (5.1). 



Distributions for Percolation Clusters 

Table VI. The Critical Exponents for the Structural Properties of 
Percolation Clusters 
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D 4 dr ~7 

2 1.896 1.66 • 0.01 0.875 • 0.005 
3 2.50 _+ 0.02 1.76 _ 0.01 0.70 -t- 0.01 
6 4 2 0.5 

Generally our numerical data suggest that the various moments of 
M(R), M(l), and R(l) can be represented as a power of their first moment, 
indicating that all moments (positive and negative) are determinated by a 
single gap exponent (see Figs. la, lb, 2a, 2b, 3a, and 3b). 

It should be noted that although the structural distributions of 
percolation do not seem to be of multifractal nature, diffusion on such 
structure might have multifractal features. (35) 

A relation between the exponents 6]3 and g, characterizing P(Rtl), was 
suggested in ref. 34, 

6]3 = ( t - g )  ~ (5.2) 

The numerical values for ~ and 6s obtained in the present work are not 
consistent with the above relation for both D = 2 and 3 (see Tables V and 
VI). A possible explanation for the disagreement is as follows. Relation 
(5.2) is derived (2~ from the expression of the enlongation, 

<r> ~ f exp(fifr) exp ( - r /N~)  a3 dr (5.3) 

and by the assumption that r ~ N ~ with e = 1. This might be true for SAWs 
on structures without holes (such as Euclidean lattices) or loopless 
structures for which by definition holes do not exist, but in the case of 
percolation in D = 2 or 3 we suspect that e < 1. Thus Eq. (5.2) is modified 
to be 

6] 3 = (1 - -  ~/g)--I  (5 .4)  

which predicts a larger value for 63. Using the numerical values for 6]3 
obtained in this work, we find that e = 0.975 _+ 0.005 for D - - 2  and 
e=0.92__0.01 for D = 3 .  Thus, the question about the existence of a 
relation between ~ and (53 is still open. 
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The density distributions P(MIR), P(MII), and P(R[l) are related 
through the convolution integral, 

P(Mr l) = f P(MI R) P(RII) dR (5.5) 

Substituting the forms suggested for P(M] R), P(M] l), and P(RI l) by Eqs. 
(4.6), (4.9), and (4.14), respectively, and using the steepest descent method, 
one obtains a relation for ~1, 62, and 63: 

62 = 61r ds+ 63) (5.6) 

Indeed, the numerical values obtained for the above exponents are in very 
good agreement with Eq. (5.6) (see Tables III-VI). 

The functional form of fi(x) for large x seems to be of the form 
e x p ( - B i x  a') for all cases. However, the form of f,.(x) for small x (x < x * )  is 
not yet clear. On one hand, the form of P(Rll) in this regime seems to be 
dominated by a power law x g3, as seen in Figs. 1 lb and 1 ld. On the other 
hand, P(MII) cannot be explained by a power function in the small-x 
regime (see Figs. 9b and 9d), but only by an exponential. As for P(M[ R), if 
we assume that for x < x*, f~(x) has a power law behavior, then the con- 
volution integral in Eq. (5.5) could not be solved for the lower regime of x, 
since an integral of two power laws cannot yield an exponential. Thus, we 
assume that also f~(x) has an exponential form e x p ( - x  g~) for x <  1. 
Using best fit techniques, we obtain a small value for gl ; see Table III and 
Fig. 7c. Thus we conjecture that both P(MIR) and P(MII) have an 
exp-exp form and P(Rll) has a power-exp form. This can be explained by 
the fact that the mass within a radius R or a chemical distance I must have 
a minimal cutoff value, but the radius R can be very small even for very 
large chemical distances. 

It is interesting to compare our results to those obtained for per- 
colation clusters generated on a Cayley tree at criticality/32) Analytical 
calculations show that P(MI l) is of the form 

P(MI I) = A / ( M )  exp( - -ax  g 2  - -  bx62), x = Mtl 2 (5.7) 

where g2 = 62 = 1. This form supports our suggestion that the form of 
P(MI1) for D = 2 and D =  3 consists of two exponentials; see Eq. (4.9). 
From Eq. (5.7) it also follows that ( M ) ~ l  2 and d~=2 for D = 6 .  Since 
every path on the Cayley tree is a random walk (when embedded in 
D = oo), P(R ] l) is dominated for R2(l > 1 by exp( - R2/l). Thus, 6 = 2 for 
D =  6, and since R 2 ~  l, it follows that ~7 = 0.5 for D = 6. These results are 
summarized for comparison with those for other dimensions in Tables 
III-VI. 
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Several types of cluster aggregates have also been studied recently (31) 
using a similar approach. For  the screen growth model and for the cluster 
cluster aggregates, P(MI R) was studied and found to scale as 

P(MIR) ~ M-~ f(M/R dj) (5.8) 

However, the form of f(x) in this case seems to have three regimes of dif- 
ferent behaviors. For  x,~ 1, f(x) behaves as e x p ( - x  ~); for x ~  1 a power 
law behavior is seen, f(x) ~ xg; and for x >> 1 an exponential decay f(x) 
exp( -x~) .  The DLA seems to have a more complicated structure, since it 
cannot be explained (31) by the above scaling form suggested for P(MIR), 
and the moments cannot be explained by a single gap exponent. 
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